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ABSTRACT 

The Wavefront Control Testbed (WCT) is used to demonstrate the wavefront sensing and control algorithms and 
procedures that will be used on the Next Generation Space Telescope (NGST).  The Segmented Telescope Control 
Software, written in MATLAB®, is the primary development and operational tool used.  The software has an extensive 
graphical user interface that allows the user to interact with the hardware and algorithms.   
 
A variety of additional software programs support the Segmented Telescope Control Software (STCS).  Various 
hardware control software interacts with MATLAB via TCP/IP connections.  When access to the hardware is 
unnecessary or undesirable, we can access the model server that simulates the system.  A stand-alone safety monitoring 
LabVIEW® program alerts technicians if a hardware failure occurs.  A C program gives the operator a graphical way of 
monitoring the network connections to the various systems.  An Interactive Data Language® (IDL) data archiving routine 
creates a database to monitor and maintain the testbed data and executes the MATLAB to Flexible Image Transport 
System (FITS) translator.  Additionally we have implemented a web-based bug tracking and plan to add experiment 
scheduling and a document archive. 
 
Due to the nature of the testbed, these software programs are constantly evolving, causing a variety of challenges over 
the years.  This poster will describe these software elements and the issues that have arisen trying to use them together. 
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1. INTRODUCTION 
When discussing the Next Generation Space Telescope (NGST) Wavefront Control Testbed (WCT) we usually refer to 
the Segmented Telescope Control Software (STCS)1, the hardware2,3, the experimentation4 or the algorithms3,5,6,7.  Until 
now, we have neglected to discuss the layers of software and hardware that enable the STCS to interact with the 
hardware.  Without these layers, the remote communication capabilities, so pivotal to the operation of the testbed, would 
be impossible. 
 
The WCT is a large testbed with small optics used to test the wavefront sensing and control algorithms that may be used 
on NGST.  The hardware is located at NASA’s Goddard Space Flight Center (GSFC), but can be controlled via the 
Internet from the Jet Propulsion Laboratory (JPL) or other remote locations.  The testbed contains two deformable 
mirrors, three small spherical mirrors each controlled by six actuators, a Charged Coupled Device (CCD) camera, a quad 
cell detector, a white light source, a 633 nm laser, various filter wheels, and various linear and rotation stages2.  When 
the user wishes to run an experiment with this hardware, s/he runs the STCS, written in The MathWorks MATLAB® 
with an extensive Graphical User Interface (GUI)1.  The user then connects to the hardware via the laboratory computing 
environment, discussed in Section 2.  The user may also test procedures or software modifications by connecting to the 
model server, discussed in Section 3, which uses the same command formatting to simulate the hardware.  Section 4 
discusses how these commands are formatted and sent.  In Section 5, we discuss how the STCS takes advantage of 
distributed computing for computationally intensive data processing.  Section 6 describes the data archiving procedures.  
Finally, in Section 7 we discuss the bug tracking system used by the STCS. 
 

2. LABORATORY COMPUTING ENVIRONMENT 
Figure 1 graphically depicts the laboratory computing environment.  In each of the subsequent sections, we will describe 
various pieces of this system.  The remote operator can be physically located anywhere geographically, as long as there 
is a network connection and the software is appropriately installed.  We regularly operate the software from both 
Maryland and California. 
 
Within the past year, GSFC has implemented new firewall rule set concerning connection activity.  If a connection is 
established, and the appropriate commands are not transmitted within the appropriate time limit, the firewall will kill the 
connection.  This failure is referred to as the short-term time out.  Additionally, if a connection is established correctly, 
but remains inactive for more than a specified time interval, the firewall will kill the connection.  This is the long-term 
time out.  The WCT team was not informed when these rules were implemented, and therefore spent several months 
attempting to diagnose the problems we had been seeing with the software.  When one of these time out instances 
occurs, the two connected programs can’t detect the broken connection.  In some cases, the only way to force the 
software to release the connection port is to restart the software on the control computers.  The short-term time out rule 
was easy to work around, but the long-term time out rule has proven to be more difficult.  We will mention how each 
rule has affected each of the various systems below. 
 
2.1. Internal Network 
The gateway to the control software and hardware is the Gateway Sun workstation.  This machine acts as a router for the 
rest of the control computers in the laboratory.  This was done in order to improve security for the system.  With this 
setup, we can allow access to the hardware from an outside system for short periods of time, and then block all access 
after the designated time period has elapsed. 
 
For data processing and archival purposes, the Gateway and Data Manager Sun workstations share their hard drives 
using Network File System (NFS), allowing files to be shared between the two computers.  Due to required office 
moves, we have had to move the Data Manager to a separate network at GSFC.  Because of the security precautions in 
place on each of the two networks, we have had problems with the NFS mounting and maintaining constant 
communications between the two machines.  The long term timeout mentioned above appears to be adding to the 
problems.  Even though both computers are physically located at GSFC, the fact that they are on different networks 
forces the connection to go through the firewall.  Periodically the NFS connection is broken by the firewall, and the 
Gateway computer must be restarted in order to reestablish the connection.  We attempted to implement “keep alive” 
procedures, but were unsuccessful in preventing the failures. We are now looking for ways to move the Data Manager 
computer back onto the original network. 
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Figure 1: Laboratory Computer Environment 

 
2.2. Optics Control Computer (OCC) 
The first of the control computers is the Optics Control Computer or OCC.  The term OCC is used for both the physical 
computer itself, and the software that runs on that computer.  This Windows NT® Personal Computer (PC) is dedicated 
to running this one piece of software, so the dual use of the acronym is reasonable.  The OCC software was written using 
National Instruments LabWindows®, thus the graphical interface code was easy to generate, and the body of the code is 
familiar to anyone who knows the C programming language.  The hardware can be controlled directly from the PC using 
the GUI, or remotely using the command formatting described below. 



The computer/software combination controls the power to the white light source, the four linear stages, six filter wheels, 
a rotation stage, the external shutter, the CCD camera and the Simulator Deformable Mirror (SMDM)8.  The computer is 
connected to the hardware via two RS232 ports, a PCI frame grabber card, a National Instruments Data Acquisition 
(DAQ) card, and Newport motion controller card. 
 
The firewall problems mentioned above were not initially evident for this computer/software combination.  Since the 
OCC controls the CCD camera and the camera translation stage, the majority of the hardware commands are sent 
through this computer.  Once the nature of the problem was discovered, we were able to demonstrate the behavior on 
this machine as well.  “Keep alive” commands have been implemented in the socket layer to maintain the connection for 
long time periods. 
 
A modified version of the OCC software has been utilized on the Phase Retrieval Camera (PRC)9,10.  While the baseline 
code and the TCP/IP command formatting has remained relatively the same, the PRC-OCC differs in that it has been 
separated into two independent programs: a “server” application consisting of the basic hardware control functions with 
a minimal GUI, and a “client” application consisting of the full-scale, user-friendly GUI, which communicates with the 
server using the same communication protocol as the STCS8.  This allows the user to control the hardware from a remote 
location via the PRC-OCC client software.  The PRC-OCC is currently the only control computer for the PRC. 9,10   
 
2.3. Deformable Mirror Control (DMC) Computer 
Of all of the control computers, the Deformable Mirror Control (DMC) computer is the only one dedicated to running 
only one device, the Aft-Optics Deformable Mirror (AODM).  The AODM is a six inch Xinetics 349 actuator 
deformable mirror11.  Due to the nature of the provided drivers, the DMC was developed on a Macintosh® running OS 
8.1.  We have been unwilling to upgrade the operating system due to possible software instabilities that may result.  The 
DMC software was written using Code Warrior Professional®, Version 3, producing C/C++ code that makes extensive 
use of MetroWerks’® Power Plant classes11.  The software has a detailed GUI, allowing both direct and remote control. 
 
The DMC computer has been susceptible to the firewall timeouts as well, primarily the long-term time out.  
Additionally, due to the existing team’s unfamiliarity with Macintosh systems, we have yet to discover the appropriate 
solution, but we expect to soon.  The use of the AODM varies from experiment to experiment, but in many instances we 
are able to work around the problem by applying the initial figure to the AODM, and then disconnecting from the 
computer for the remainder of the experiment. 
 
2.4. Accessory Control Computer (ACC) 
The Accessory Control Computer (ACC) is dedicated to running the ACC software, and thus the acronym ACC is often 
applied to both the hardware and the software.  The user can control the hardware remotely or via the GUI interface on 
the Windows NT PC.  Currently, the ACC controls a rotation stage, a translation stage, the Fast Steering Mirror (FSM), 
and the actuators for the WCT-2 small optics.  The WCT-2 small optics consists of three small, round, spherical mirrors.  
A set of three New Focus picomotor actuators and three Physik Instrument PZT actuators provide tip, tilt, and piston 
control for each mirror2.  The ACC connects to the stages via a Newport controller card and to the actuators via a series 
of daisy-chained GPIB interfaces. 
 
Usually, FSMs are used to remove jitter and drift from a system in order to improve image stability.  In the case of 
WCT, the line of sight drift and jitter environment are acceptable for standard operation2.  In this case, the FSM will be 
used to induce jitter and drift into the system to test the limits of the wavefront sensing and control algorithms.  The 
ACC communicates with the FSM via an analog to digital (A/D) 8-channel PowerDaq board to simulate any desired 
jitter or drift profiles.  The current signal generation capability is to generate, in real time, a waveform based arbitrary 
combination of sine waves, square waves, and triangle waves with varying amplitude, frequency, phase, and timer 
responses computed from specified digital finite impulse response (FIR) or infinite impulse response (IIR) transfer 
functions.  As the testbed grows, we may use the FSM in combination with a quad-cell controller or CCD camera to 
allow closed-loop control to remove what line of site jitter exists in the system. 
 
This computer was the most susceptible to the firewall connection errors.  The connection sequence sent by the 
Executive was not sufficient to prevent the short-term failure, and the hardware was often not commanded enough to 



avoid the long-term failure.  Initially, since the problems were so evident on this computer, we focused on the ACC 
software itself.  Some modifications were made and tested, but failed to improve the problem.  The modifications did 
shed light on the nature of the trouble and helped us redirect our efforts to the firewall.  The “keep alive” solution used 
on the OCC, was first implemented, tested, and verified on the ACC. 
 
2.5. Monitor Software 
The Monitor software runs on the Gateway computer and provides the user with basic information about the status of the 
system.  This software controls no hardware, but provides the user with a way to monitor the health of the system.  
Although the Monitor runs on the Gateway, it can be viewed on remote computers via X-Windows display software.  
There is nothing to control in this software, and it can’t be connected to the STCS. 
 
The various control programs connect to the monitor server and every time a message is passed between the control 
software and the STCS, the command is mirrored on the Monitor.  Additionally, the monitor displays the network 
commands as well as several status lights showing the health of the system.  As the status of the various controllers 
change, so do the colored blocks.  The possible colors are green, yellow, red, white and black.  Black indicates that the 
software is not currently connected to the monitor, and therefore the monitor has no information on the status of the 
system.  When the indicator is white, the control software has connected to the monitor, everything is nominal, and there 
is no STCS connection to that system.  A green status is similar to white, except that the STCS has successfully 
connected to the control software.  Yellow indicates that they system can be controlled either remotely or locally, but 
otherwise, the system is normal.  Red indicates a hardware error. 16,17 
 
In Figure 2, the OCC block is displayed as red since there was a CCD initialization error.  The Optical Telescope 
Assembly (OTA) Controller block is black indicating that the software has not connected to the Monitor.  This 
connection block was added when we first planned to have a large primary mirror.  The original mirror was never built, 
so we have not needed an OTA Controller, but never bothered to remove the related block.  The Deformable Mirror 
(DM) Controller is running optimally, so the status is green.  The yellow Accessory Controller, ACC, block designates 
that it is in a state where the software can be controlled either directly or remotely.16,17 

 

Figure 2: WCT Monitor Screen Shot 

 
2.6. Safety Monitor Computer 
The safety monitor computer and software do not directly control any hardware.  The software, running on a 
Windows 98® PC, can not be remotely controlled.  The safety monitor is part of the internal laboratory network, but is 
unable to connect to the STCS or Monitor Software.  The software is written in LabVIEW®, and monitors the CCD 
camera chiller flow rate, the lamp chiller flow rate, the AODM power levels, the SDM power levels, airflow, and 
temperature.  If an anomaly occurs, the safety system will contact the testbed team via e-mail and pagers. 
 
The safety monitor computer is connected to a SCXI National Instruments chassis via a National Instruments PCI  card.  
The chassis contains various modules that measure the health of the specified hardware.  A series of Pulizzi relay boxes, 
each controlling the power to one or several of the aforementioned devices, are connected to the computer via a National 
Instruments serial port expansion card. If the monitored device goes out of range, action is taken.  The one exception is 
the temperature: if one of the 17 temperature sensors is above the specified level, no action is taken.  If the air flow drops 



below the specified limit, the safety system will alert the team, but take no further action.  If a problem occurs with any 
of the other hardware elements, the safety software will flip the relay, killing the power for that device and several 
associated devices.  Then the system will alert the team.  Manual intervention is required to restore the laboratory to 
operational conditions.18 
 
Since this system is focused on the internal laboratory environment, we have not had the networking difficulties evident 
with the control computers.  Currently, the safety monitor software does not communicate with the STCS.  If an error 
occurs during experimentation, the user will not be informed directly through the STCS.  A long term goal for this 
system is to develop a way to interface the control software with the STCS to allow real time monitoring of the 
hardware. 
 
2.7. Quad Cell Controller 
Data from the quad cell is collected using a dedicated laptop computer running Windows 95®.  The output from the quad 
cell is delivered to an analog signal processor and then to an analog-to-digital (A/D) converter card installed in the laptop 
computer.  The signal processor outputs a voltage in X and Y that is proportional to the image displacement at the quad 
cell.  These signals are sent to the A/D converter and saved on the laptop computer.   The position of the quad cell is 
controlled by three stages allowing x, y, and z translations.  These stages are controlled via a parallel port to GPIB 
converter. 
 
The network communication problems mentioned above do not affect this system since the laptop is not connected to 
any network.  Any information acquired using the quad cell must be manually transferred to another system.   
 
In the past, this system has only been used for specific jitter tests, but in the future the usage of the system may expand.  
If this is the case, the software will need to be re-written in order for it to be interfaced with the standard software 
system. 
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3. MODEL SERVER 
The model server is software that resides on a UNIX workstation and is used for training, testing, and validation.  As 
shown in Figure 3, the STCS software interfaces to the testbed in the same method as the hardware.  It uses the same 
commands and command formatting as would be sent to the hardware, but sends them to the server process instead. 
 
The code is written predominantly in FORTRAN, with some communication routines written in C.  The code interfaces 
with the Modeling and Analysis for Controlled Optical Systems (MACOS) models creating simulated images for use in 
testing and analysis.  For more information on the model server and MACOS, see Reference 1. 
 

4. COMMUNICATION WITH THE STCS 
4.1. The Internet Connection 
The remote computer talks to the control computers through the Internet.  The Gateway computer acts as a firewall and 
isolates the control computers from the rest of the Internet.  The control computers are accessed via Network Address 
Translation (NAT), which is implemented on the Gateway computer.  Each control computer has its own IP address to 
which NAT allows only certain computers to connect.  The actual communications protocol is Berkeley Sockets.  Each 
control computer has a specific port that is connected to via a Berkeley socket and binary commands are sent back and 
forth between the remote computer and the control computers. 
 
4.2. Command Syntax 
The binary commands sent to the control computers were derived specifically for the hardware on the testbeds.  The 
commands are rigidly defined in Interface Control Documents and all numerical values sent must be “little-endian” to 
conform to PC standards.  Each command consists of several fields that 1) identify the control computer the command is 
meant for, 2) define a sequence number, 3) specify which piece of hardware is being accessed, and 4) give the value to 
set the hardware to.  In addition, the position of a particular filter wheel or translation stage may be queried.  After 
receiving the command, the control computer sends back a response that the command has been received and returns 
either a message that the command was successful or returns an error message if there was a problem commanding the 
hardware.  This methodology has worked well for us and even allows the user to run from a laptop connected through an 
analog modem.   
 
For more information on the communication with the STCS, see Reference 1. 
 

5. DATA PROCESSING 
The phase retrieval algorithm of the STCS requires significant computing power.  The distribution of this processing 
load is handled differently, depending on the location of the remote operator.  The differences between JPL and GSFC 
are described below. 
 
5.1. GSFC 
The computing environment at GSFC is shown in Figure 1 and Figure 3.  The key processing aspects of the system are 
the Gateway and Data Manager UNIX machines.  The Gateway has two 200 MHz UltraSPARC CPUs and the Data 
Manager has four 400 MHz UltraSPARC II CPUs.  The STCS can distribute the phase retrieval processes between the 
two computers to optimize efficiency.  A standard phase retrieval process takes approximately four minutes to process 
on the Data Manager computer. 
 
5.2. JPL 
The environment at JPL, shown in Figure 4, varies from that of GSFC in a couple of fundamental ways.  The user has 
the choice of sending the process to a beowolf or a network of Sun workstations.  The Beowulf is created out of four to 
five PC’s running Linux.  The Intel Pentium III processors range from 866 MHz to 1 GHz.  If using the Beowulf, a 
standard phase retrieval takes approximately two minutes. 
 
The network of Sun workstations at JPL has a variety of processors and computers.  The STCS software allows the user 
to intelligently distribute the processes to computers with lighter loads.  The processing time for this system is similar to 
that of the GSFC system, about four minutes, but that number will vary depending on the computing load of the network 
and the speed of the CPUs. 
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6. DATA ARCHIVING 

We implemented a relatively simple system for data archiving.  The data is stored on the Data Manager computer in a 
specified directory structure.  Within this structure, a directory name standard is used to define names for sub-directories, 
each containing data for one experiment.  If using the STCS, the steps used to create the directory have been 
automated1,17.   
 
After the data has been stored in the directory, a program runs to convert the data files from MATLAB to Flexible Image 
Transport System (FITS) format19,20.  The metadata stored in the FITS header is then uploaded into a database created in 
Research System, Inc. Interactive Data Language® (IDL).  This database is searchable via a GUI interface or directly 
from the IDL command prompt21.  
 
When the data disk begins to fill up, the older data is archived onto CD-Rs.  The IDL database tracks the file locations in 
order to maintain knowledge of the file locations.  Three copies are made of each CD-R, one at JPL and one at GSFC are 
stored in a team member’s office for general use.  An additional reserve copy is stored in the laboratory in case 
something were to happen to the other two. 
 
In the future, we hope to extend this database to monitor documents and add new file types. 
 

7. WREQ BUG TRACKING SOFTWARE 
To support the development of the STCS, we have implemented the WREQ bug tracking software developed by a group 
at Duke University.  This is a web based system accessible to the WCT team, but not the outside world.  Users can 
submit problems to the system via e-mail or an online form.  The WCT software team will then act on the requests and 
update the web site with either the current status of the request.  The software tracks resolved issues and includes 
features for monitoring the number of requests and the solution time.  In addition to providing the user with a formal tool 
for incident reporting, this allows the programmers to have a central location to monitor and track software issues. 22 
 



Currently, this system is only in use for issues related to the STCS.  In the future we would like to extend the capability 
to include development of the control software.  Additionally, we would like to use similar software for experiment 
planning and scheduling. 
 

8. SUMMARY 
The laboratory computing environment supporting the WCT has evolved into a complex system with several different 
layers, developed by many different people.  Without these layers, operation of the testbed would require multiple 
people physically located in the lab in order to perform even the simplest of tasks.  The time taken to create the current 
system has been repaid many times over in the improved efficiency of the entire testbed operation.  
 
There are many areas for improvement.  As the testbed evolves, we plan to implement standards for control software, 
thus simplifying system maintenance.  Additionally, we will evaluate the necessity of upgrading and replacing portions 
of the software. 
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